Application of the Dissipative Particle Dynamics Method to Ferromagnetic Colloidal Dispersions

نویسندگان

  • AKIRA SATOH
  • Roy W. Chantrell
چکیده

We have investigated the validity of the application of the dissipative particle dynamics (DPD) method to ferromagnetic colloidal dispersions by conducting DPD simulations for a two-dimensional system. Firstly, the interaction between dissipative and magnetic particles has been idealized as some model potentials, and DPD simulations have been carried out using such model potentials for a two magnetic particle system. In these simulations, we have concentrated our attention on the collision time for the two particles approaching each other and touching from an initially separated position, and such collision time has been evaluated for various cases of the mass and diameter of dissipative particles and the model parameters, which are included in defining the equation of motion of dissipative particles. Next, we have treated a multi-particle system of magnetic particles, and have evaluated particle aggregates and the pair correlation function along an applied magnetic field direction. Such characteristics of aggregate structures have been compared with the results of Monte Carlo and Brownian dynamics simulations in order to clarify the validity of the application of the DPD method to particle dispersion systems. The present simulation results have clearly shown that DPD simulations with the model interaction potential presented here give rise to physically reasonable aggregate structures under circumstances of strong magnetic particle-particle interactions as well as a strong external magnetic field, since these aggregate structures are in good agreement with those of Monte Carlo and Brownian dynamics simulations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dissipative Particle Dynamics simulation hydrated Nafion EW 1200 as fuel cell membrane in nanoscopic scale

The microphase separation of hydrated perfluorinated sulfonic acid membrane Nafion was investigated using Dissipative Particle Dynamics (DPD). The nafion as a polymer was modelled by connecting coarse grained beads which corresponds to the hydrophobic backbone of polytetrafluoroethylene and perfluorinated side chains terminated by hydrophilic end particles of sulfonic acid groups [1, 2]. Each f...

متن کامل

Investigation of particles size effects in Dissipative Particle Dynamics (DPD) modelling of colloidal suspensions

In the Dissipative Particle Dynamics (DPD) simulation of suspension, the fluid (solvent) and colloidal particles are replaced by a set of DPD particles and therefore their relative sizes (as measured by their exclusion zones) can affect the maximal packing fraction of the colloidal particles. In this study, we investigate roles of the conservative, dissipative and random forces in this relative...

متن کامل

Fluid Particle Dynamics: A Synthesis of Dissipative Particle Dynamics and Smoothed Particle Dynamics

Fluid particle dynamics: a synthesis of dissipative particle dynamics and smoothed particle dynamics Pep Espa~ nol() (received ; accepted) PACS. 47.11+j { Computational methods in uid mechanics. Abstract. { We present a generalization of dissipative particle dynamics that includes shear forces between particles. The new algorithm has the same structure as the (isothermal) smoothed particle dyna...

متن کامل

Hydrodynamic interactions in dissipative particle dynamics

Dissipative particle dynamics !DPD" has recently attracted great interest due to its potential to simulate the dynamics of colloidal particles in fluidic devices. In this work, we explore the validity of DPD to reproduce the hydrodynamic interaction between a suspended particle and confining solid walls. We first show that a relatively large Schmidt number of the DPD fluid can be obtained by in...

متن کامل

Microstructure and Rheology Relationships for Shear Thickening Colloidal Dispersions

The non-Newtonian shear rheology of colloidal dispersions is the result of the competition and balance between hydrodynamic (dissipative) and thermodynamic (conservative) forces that lead to a nonequilibrium microstructure under flow. We present the first experimental measurements of the shear induced microstructure of a concentrated, near hard-sphere colloidal dispersion through the shear thic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006